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Abstract- Stress  has  become  a  major  concern  affecting  
physical health, mental well-being, and overall productivity  
in  modern  lifestyles.  Conventional  stress  assessment  
techniques such as questionnaires, clinical interviews, and  
manual  observation  are  subjective,  time-consuming,  and  
unsuitable for continuous monitoring. To overcome these  
limitations, this paper presents an IoT-enabled intelligent  
Stress  Monitoring  System  that  performs  real-time,  
continuous,  and  objective  stress  assessment  using  
multimodal  physiological  sensing  and  machine  learning  
techniques. The proposed system integrates a Galvanic Skin  
Response (GSR) sensor to measure electrodermal activity, a  
MAX30102 sensor to  capture heart  rate  and pulse-based  
variability, and a DHT11 sensor to monitor environmental  
temperature and humidity. All sensor data are acquired and 
transmitted using an ESP8266 Wi-Fi microcontroller, while  
a GPS module provides real-time location tracking during  
high-stress  events.  The  collected  data  are  transmitted  to  
cloud  platforms  where  ThingSpeak  enables  real-time  
visualization  and  preliminary  analytics,  and  Firebase  
Realtime Database supports secure data storage and web  
dashboard  integration.  A  machine-learning–based  stress  
classification  model  categorizes  stress  levels  into  low,  
moderate,  and  high  using  features  extracted  from 
physiological  signals.  Experimental  evaluation  
demonstrates high performance, achieving an accuracy of  
96.85%, validating the effectiveness of multimodal sensor  
fusion. The system offers a reliable, low-cost, and scalable  
solution for  remote  stress  monitoring,  early  intervention,  
and intelligent mental health management.
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I INTRODUCTION

It has been observed that stress is emerging as one of the most 
important influences on human health, psychological, as  well 
as overall performance in routine undertakings. The World 
Health Organization (WHO) has reported that over 70 percent 
of the adult population has common symptoms of stress and 
that chronic exposure to stress may have serious effects which 
include hypertension, depressive disorders, anxiety disorders, 
lack of immunity, heart complications and depression. The 
problem  of  chronic  stress  has  been  enhanced  by  modern 
lifestyles, which are marked with heavy workloads, academic 
pressures,  multitasks,  and  irregular  schedules  of  all  age 

groups. Although it has severe health consequences, stress is 
still underdiagnosed as there might be no immediate sign of 
the  symptoms  or  people  might  avoid  seeking  clinical 
assistance until the situation aggravates.

The  classical  stress  measurement  techniques  are  based  on 
regular  clinical  assessments,  psychological  surveys  (PSS, 
STAI and DASS), and hand monitoring of the physiological 
symptoms. These methods are helpful but have a number of 
weaknesses. Such techniques are subjective, they require good 
honesty  and  self-understanding  of  individuals  and  yield 
inconsistent outcomes among various clinicians.  Moreover, 
they merely give the picture of the state of an individual at a 
specific  point  in  time  and  do  not  give  a  real-time 
understanding.  Physiological  signals  can also  be  evaluated 
manually, but this method is also susceptible to human error 
and delays, thus is not appropriate in identifying diseases at an 
early stage or in constant monitoring. Thus, traditional stress 
measurement methods do not give the accuracy, sensitivity, 
and individualization needed in the modern healthcare system.

The innovations in the sensor technology, embedded systems, 
and  IoT  communication  have  transformed  the  design  of 
intelligent  health-monitoring  solutions.  Galvanic  Skin 
Response (GSR) and Heart Rate Variability (HRV), pulse rate, 
temperature, humidity, and geographic movement patterns are 
examples of physiological cues that are very good predictors 
of  emotional  and  physiological  stress.  The  signals  can  be 
collected without the use of invasive methods with electronic 
sensors that are cheap to purchase. The capacity to gather real-
time data of the IoT devices, in conjunction with the cloud 
systems that  allow fast  storage,  visualization and machine 
learning analytics has enabled automated stress monitoring to 
be viable and even feasible. In a bid to capitalize on these 
developments, this paper proposes an overall IoT-based Stress 
Monitoring System that brings together numerous sensors and 
communication modules in conjunction with cloud services to 
form a single unit. The electrodermal activity is measured with 
the help of the GSR sensor that records the changes of the skin 
conductance due to the activity of the sympathetic nervous 
system which  is  triggered  by  a  stressful  event.  The  pulse 
oximeter sensor, which is MAX30102, is used to record the 
heart  rate  and  pulse,  and  with  its  help,  cardiovascular 
reactions, which are usually associated with stress attacks, can 
be  detected.  Also,  the  DHT11  temperature  and  humidity 
sensor can track the environmental characteristics, since the 
external  conditions  could  affect  both  the  physiological 
reactions and the quality of the sensor.
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     The system is designed to use ESP8266 microcontroller,  
which has a high processing power, built-in Wi-Fi, low power 
consumption, and supports the IoT protocols.  By adding a 
GPS  module,  the  system  is  also  enhanced  with  the 
functionality of the real-time geolocation, which is essential to 
the emergency help in extreme conditions of stress or a panic 
attack.  This  aspect  makes the system especially  helpful  to 
vulnerable populations including the elderly, the lone workers, 
and students under extreme stress of the mind and the patients 
with anxiety disorders.

Any sensor-data is sent to cloud solutions to make sure that it 
can  be  accessed and analyzed in  real-time.  ThingSpeak is 
employed to perform IoT-based data logging, graphical and 
fast  analytics.  Its  MATLAB processors allow initial  signal 
processing and signal trend analysis on the cloud. Firebase 
Realtime Database is used in long-term storage, authentication 
and integration with the web application. Firebase is secure to 
handle  user  information  and  allow  it  to  be  synchronized 
smoothly  between  the  hardware  device  and  the  online 
dashboard.

Specially  created  web-based  monitoring  dashboard  shows 
real-time stress monitoring, previous trends, the location, and 
notifications. The interface is made available to the healthcare 
workers, caregivers, or the concerned users so that they would 
be able to monitor the stress status of the individual remotely. 
The dashboard enhances an ongoing track record and therefore 
it is of great help in preventive healthcare, early intervention 
and behavioral analysis.

The suggested system is unique because it addresses the issue 
of physiological sensing, IoT connectivity,  cloud analytics, 
and geolocation tracking with the aim of providing an accurate 
and  continuous  stress  monitoring  solution.  It  is  used  to 
overcome these weaknesses of manual tests: it offers real-time, 
objective,  continuous,  and  scalable  stress  detection.  The 
system is cheap, simple to install and is appropriate in both 
personal and clinical applications due to the integration of 
readily available and cheap components.

Moreover, the growing need in remote healthcare services and 
online  mental-health  platforms  has  established  a  strong 
necessity in systems that can be successfully used not only in 
the  hospital  settings.  The  proposed  stress  monitoring 
framework  will  be  scalability-  and  adaptability-oriented, 
meaning that it will be able to serve high valences of users at  
the same time due to cloud-based systems such as Firebase and 
ThingSpeak. Its open system enables easy addition of new 
sensors,  machine  learning  models,  or  mobile  apps  to  its 
architecture in upgrades. This renders the system appropriate 
not  only  at  individual  level  but  also  in  institutional 
applications  at  work  place,  education  centers,  elderly  care 
centers,  and  police  departments.  The  system offers  robust 
background  to  next-generation  smart  healthcare  systems, 
which will minimize health risks, enhance user awareness and 
offer proactive mental-health intervention by integrating real-
time physiological sensing, cloud connectivity, and intelligent 
analytics.

II LITRATURE SURVEY

Stress monitoring systems have gone through a major change 
in  the  past  two decades  with  the  traditional  psychological 
assessment  becoming  more  advanced  and  sensor  oriented 
framework  with  AI  power.  Initial  studies  allotted  much 
emphasis on self reported questionnaires like the Perceived 
Stress Scale (PSS), Depression Anxiety Stress Scale (DASS) 
and the State-Traits Anxiety Inventory (STAI). These tools 
were  however  not  reliable  in  continuous  or  real  time 
monitoring since they were only based on human perception 
and recollection after the fact which was not reliable as they 
were widely used. It did not take long before researchers noted 
that stress is more of a physiological phenomenon which is 
associated with the autonomic nervous system and therefore, 
objective biological markers could be more reliable indicators.

This understanding resulted in a boom in laboratory based 
physiological  stress  measurements  that  incorporated  high 
grade  measuring  devices  (ECG  monitors  of  heart  rate 
variability (HRV), electrodermal activity devices of GSR and 
respiration monitors of spirometers and infrared thermography 
of  skin  temperature).  Although  these  laboratory  systems 
yielded relevant physiological data, they were expensive and 
complex in terms of hardware and trained professionals and 
needed a controlled environment, which was unsuitable to real 
world, daily monitoring. Similar to the quality studies in early 
medicine  that  worked  only  in  controlled  laboratory 
environments, those traditional stress detection systems were 
not capable of scaling or working in the day-to-day workings 
of the human being.

The  following  significant  change  was  the  emergence  of 
wearable  sensors  and  miniature  biosignal  devices  that 
provided the opportunity to monitor physiological parameters 
in the field. The sensors like the GSR sensor took a center 
stage  in  the  stress  literature  since  the  skin  conductance 
increases  drastically  upon  activation  of  the  sympathetic 
nervous system. At the same time, the optical pulse detectors 
such  as  PPG  modules  and  MAX30102  became  popular 
because they could provide the heart rate and estimate HRV 
parameters  without  any  invasiveness.  Various  researchers 
demonstrated  that  the  combination  of  GSR (electrodermal 
reactivity)  and  HRV  indicators  (SDNN,  RMSSD,  LF/HF 
ratio) can be used to classify stress much more effectively. 
Other  sensors,  like  temperature  and  humidity  modules 
(including DHT11) were also found in the literature, mostly to 
explain  the  effects  of  the  environment  that  can  distort 
physiological measurements or give false positive results.

This  sensor  revolution  was  bound  to  introduce  machine 
learning. Initial efforts were linear classifiers which could not 
perform  as  well  as  their  performance  is  nonlinear  and 
dependent  on  the  context  of  the  stress  component  in 
physiological signals. Gradually, more sophisticated machine 
learning algorithms like the Random Forest, SVM, Gradient 
Boosting and XGBoost have become the new norm in the field 
of  stress  detection.  Such models  may be able  to  represent 
intricate patterns on more than one physiological scale and 
even be computationally small an important benefit observed 
in  other  healthcare  automation  literature.  Other  scientists 
started working on deep learning and convolutional networks 
to  examine raw GSR or  PPG signals,  and they were very 
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precise in structured data. Nevertheless, like the deep learning 
in the medical-quality research, these models were smacking 
of huge computing power, and thus could not work in real-time 
embedded stress sensors.

Along with the development of algorithms,  IoT and cloud 
technologies  reached  adulthood  and  created  new 
opportunities. IoT microcontrollers such as ESP8266, which 
provided  built  in  WiFi,  low  power  usage  and  sufficient 
processing unit to support sensor fusion, became more popular 
with researchers. Real time visualization, initial analytics and 
MATLAB-based  processing  were  implemented  on  IoT 
platforms (such as ThingSpeak), whereas scalable storage and 
security  layers  as  well  as  connection  to  web/mobile 
dashboards  were  realized  using  cloud  services  (such  as 
Firebase).  Such  cloud-enhanced  architecture  reflected 
innovations in automated pharmaceutical analysis with cloud 
environments  taking  over  manual  data  processing  and 
providing an extension of the usefulness of the system in a 
manner that transcends laboratory limits.

There is a also a large amount of research in context aware 
stress monitoring since it is realized that stress does not exist in 
a vacuum. GPS modules and mobile assisted location tracking 
started  to  emerge  in  the  literature  with  the  capabilities  to 
investigate behavioral and environmental contexts of whether 
stress  spikes  during  commutes  or  during  work  hours  or 
crowded spaces or during isolated conditions. Nevertheless, a 
series of limitations were always observed in the research:

1. Excessive use of individual sensor modalities A number of 
early systems were only relying on GSR or HR alone and 
therefore  were  sensitive  to  noise,  motion  artifacts  and 
environmental  variations.  Multimodal  fusion  has  not  been 
studied in real world applications.

2.  Little  integration  and  isolation  of  datasets  as  medicine 
quality,  disease  prediction,  and  treatment  recommendation 
studies  hardly  ever  combined  datasets,  stress  datasets  are 
discontinuous across sensors,  task regimes,  sampling rates, 
and labeling schemes.

3. Deployment can scale models (e.g. deep neural networks) 
that are effective on research but require excessive power and 
computational resources to run on the IoT edge.

4. Small real world validation many stress models were only 
tested in controlled studies like mental arithmetic tasks hence 
they are not reliable to day to day stress changes.

5. A deficiency in explainability like in the previous healthcare 
AI systems, stress monitoring models were not transparent and 
as such, psychologists or clinicians could not easily discover 
why the model had achieved a certain level of stress.

It was also observed that researchers did not find a system 
which  combines  environmental  sensing  (humidity, 
temperature),  physiological  sensing  (PPG/GSR),  location 
context,  and  cloud-based  analytics  into  a  single  scalable 
platform.  Although  single  aspects  had  been  thoroughly 
investigated, there was a lack of holistic multimodal stress 
monitoring  models,  which  were  similar  to  the  fact  that 

previous research in the healthcare industry seldom attempted 
to  pull  together  a  single  system to  regulate  the  quality  of 
medicine, medical diagnosis, and treatment guidelines.

III PROPOSED SYSTEM

The  proposed  system  is  an  intelligent,  IoT-enabled  stress 
monitoring framework designed to continuously assess human 
stress  levels  in  real  time  using  multimodal  physiological 
sensing, cloud computing, and machine learning techniques. 
The system aims to overcome the limitations of conventional 
stress assessment methods by providing objective, automated, 
and context-aware stress detection.

A. Overall System Architecture
The proposed system architecture consists of the following 
interconnected modules:

a. Physiological and Environmental Sensing Module
b. Embedded Processing and IoT Communication Module
c. Cloud-Based Data Management and Analytics Module
d. Machine Learning–Based Stress Classification Module
e. Web-Based Monitoring and Alert Module

All modules operate in coordination to ensure reliable data 
acquisition,  processing,  transmission,  analysis,  and 
visualization.

B. Physiological and Environmental Sensing Module
This  module  is  responsible  for  capturing  real-time 
physiological responses and environmental conditions related 
to stress:
a. Galvanic Skin Response (GSR) Sensor

Measures skin conductance variations caused by sweat 
gland  activity  Reflects  sympathetic  nervous  system 
activation  during  stress  Provides  highly  sensitive 
indicators of emotional arousal.

b. MAX30102 Pulse Oximeter Sensor
Captures  heart  rate  and  pulse  waveform  using  PPG 
technology Enables extraction of heart  rate variability 
(HRV) features Helps identify cardiovascular responses 
associated with stress.

c. DHT11 Temperature and Humidity Sensor
Monitors  ambient  temperature  and  humidity  levels 
Assists  in  distinguishing  physiological  stress  from 
environmental  effects  Improves  overall  accuracy  of 
stress detection.

d. GPS Module
Collects  real-time latitude  and longitude  data  Enables 
location-aware  stress  monitoring  Supports  emergency 
response in high-stress situations

C. Embedded Processing and IoT Communication Module
The ESP8266 microcontroller serves as the core processing 
unit.
a. Key functions include:

o Sensor interfacing and data acquisition
o Basic signal conditioning and data formatting
o Wireless data transmission using built-in Wi-Fi

b. The ESP8266 is selected due to:
o Low power consumption
o High compatibility with IoT platforms
o Cost-effectiveness and scalability
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D. Cloud-Based Data Management and Analytics Module
To  enable  real-time  monitoring  and  scalable  storage,  the 
system integrates cloud platforms:
a. ThingSpeak IoT Platform

o Performs real-time data visualization
o Provides graphical representation of physiological 

signals
o Supports basic analytics such as trend analysis

b. Firebase Realtime Database
o Stores sensor data and stress predictions securely
o Enables  real-time  synchronization  with  the  web 

dashboard
o Supports user authentication and data integrity

Cloud integration ensures remote accessibility, data security, 
and long-term analysis.

E. Machine Learning–Based Stress Classification Module
Extracted  features  from  physiological  and  environmental 
sensors are processed by a machine learning model.
a. Stress levels are classified into:

o Low Stress
o Moderate Stress
o High Stress

Multiple  algorithms  were  evaluated,  including  Logistic 
Regression, SVM, XGBoost, and Random Forest.
b. Random Forest was selected due to:

o Superior accuracy
o Robustness to noise and outliers
o Ability  to  handle  nonlinear  physiological 

relationships
o Feature importance interpretability

Model training is performed offline, while prediction results 
are deployed on the cloud for real-time inference.

F. Context-Aware Stress Detection
a. Stress predictions are correlated with:

o Time stamps
o GPS coordinates
o Environmental parameters

b. This context-aware approach:
o Improves reliability of stress detection
o Identifies stress patterns linked to specific locations 

or conditions
o Reduces false-positive stress alerts

G. Web-Based Monitoring and Alert System
a. A web-based dashboard is developed using:

o HTML, CSS, and JavaScript
o Chart.js for live data visualization
o Google Maps API for GPS-based location display

b. Dashboard functionalities include:
o Real-time stress level display
o Historical stress trend analysis
o Live sensor monitoring
o GPS-based emergency alerts

Alerts are triggered automatically when stress levels exceed 
predefined thresholds.

H. Advantages of the Proposed System
a. Continuous and non-invasive stress monitoring
b. Real-time and remote accessibility

c. Multimodal sensor fusion for improved accuracy
d. Cloud-based scalability and data security
e. Context-aware and location-based stress analysis
f. Low-cost and energy-efficient design

I. Summary of the Proposed System
The proposed system presents a holistic approach to stress 
monitoring  by  integrating  physiological  sensing,  IoT 
communication, cloud analytics, machine learning, and web-
based visualization into  a  single  scalable  framework.  This 
intelligent  system  provides  accurate,  real-time  stress 
assessment and supports early intervention, making it suitable 
for  personal  healthcare,  workplace monitoring,  and remote 
mental health applications.

IV METHODOLOGY

The  methodology  adopted  in  this  work  focuses  on  the 
systematic development of an IoT-enabled intelligent stress 
monitoring system using multimodal physiological sensing, 
cloud  computing,  and  machine  learning  techniques.  The 
complete  methodology is  divided into  sequential  stages  to 
ensure  accurate  data  acquisition,  reliable  processing,  and 
effective stress classification.

A. Data Acquisition Methodology
a. Physiological,  environmental,  and  location  data  are 

collected continuously from the user.
b. The following sensors are employed:

o GSR  sensor to  measure  electrodermal  activity 
caused by stress-induced sweat gland activation.

o MAX30102 sensor to record heart rate and pulse 
waveform data using photoplethysmography (PPG).

o DHT11 sensor to measure ambient temperature and 
humidity.

o GPS  module to  capture  real-time  latitude  and 
longitude.

c. All  sensors  are  interfaced  with  the  ESP8266 
microcontroller,  which  synchronizes  sensor  readings 
and ensures stable sampling.

B. Signal Preprocessing
Raw sensor signals often contain noise, missing values, and 
motion  artifacts.  To  enhance  data  quality,  the  following 
preprocessing steps are applied:
a. Removal of invalid or missing sensor readings
b. Noise  reduction  using  basic  smoothing  and  filtering 

techniques
c. Normalization of sensor values to maintain uniform data 

ranges
d. Time alignment of multimodal sensor data
This  preprocessing  ensures  reliable  feature  extraction  and 
accurate stress prediction.

C. Feature Extraction
Relevant features are extracted from the preprocessed sensor 
data to represent stress-related physiological patterns:
a. GSR Features

o Skin conductance level
o GSR peak count and peak frequency

b. PPG / Heart Rate Features
o Heart rate (BPM)
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o Heart  rate  variability  (HRV)  parameters  such  as 
SDNN and RMSSD

o Pulse amplitude variations
c. Environmental Features

o Temperature changes
o Humidity variations

d. Context Features
o Timestamp
o GPS coordinates

These features form a unified dataset for machine learning 
analysis.

D. Data Transmission and Cloud Integration
a. The  ESP8266  transmits  processed  sensor  data  to  the 

cloud using Wi-Fi connectivity.
b. Two cloud platforms are used:

o ThingSpeak  for  real-time  data  visualization, 
plotting, and basic analytics

o Firebase Realtime Database for secure data storage 
and dashboard synchronization

c. Cloud integration enables remote access, scalability, and 
real-time monitoring.

E. Stress Level Classification
a. A  supervised  machine  learning  approach  is  used  to 

classify stress levels.
b. Stress is categorized into three classes:

o Low Stress
o Moderate Stress
o High Stress

c. Several algorithms are evaluated:
o Logistic Regression
o Support Vector Machine (SVM)
o XGBoost
o Random Forest

d. Random Forest is selected as the final classifier due to:
o High accuracy
o Robustness to noisy physiological data
o Ability to model nonlinear relationships
o Feature importance interpretability

e. Model training is performed offline, while predictions are 
deployed on the cloud for real-time inference.

F. Context-Aware Stress Analysis
a. Stress predictions are correlated with:

o Environmental conditions
o Time of occurrence
o GPS location

b. This fusion enables:
o Identification of stress-prone locations
o Distinction  between  physiological  and 

environmental stress
o Reduction of false stress alerts

G. Web-Based Visualization and Alert Mechanism
a. A web dashboard is developed using:

o HTML, CSS, and JavaScript
o Chart.js for real-time graphs
o Google Maps API for GPS visualization

b. The dashboard displays:

o Live sensor readings
o Current stress level
o Historical stress trends
o User location during high-stress events

c. Alerts are triggered automatically when stress exceeds 
predefined thresholds.

H. Workflow Summary
a. Sensors  collect  physiological,  environmental,  and 

location data
b. ESP8266 preprocesses and transmits data to the cloud
c. Features are extracted and analyzed
d. Machine learning model classifies stress levels
e. Results are visualized and alerts are generated

I. Advantages of the Methodology
a. Continuous and non-invasive monitoring
b. Real-time stress detection and visualization
c. Multimodal sensor fusion for higher accuracy
d. Scalable cloud-based architecture
e. Context-aware and location-assisted stress analysis

V RESULTS AND ANALYSIS

The  proposed  IoT-enabled  stress  monitoring  system  was 
evaluated using real-time physiological data collected from 
volunteers, simulated stress scenarios, and publicly available 
stress-related datasets. Data obtained from the GSR sensor, 
MAX30102 pulse sensor, DHT11 temperature and humidity 
sensor, and GPS module were continuously transmitted to the 
cloud,  preprocessed,  and  analyzed  using  machine  learning 
techniques. The objective of the evaluation was to assess the 
accuracy, reliability, and practical feasibility of the system in 
real-world conditions.
The performance of different  machine learning algorithms, 
including  Logistic  Regression,  Support  Vector  Machine 
(SVM), XGBoost, and Random Forest, was compared using 
the  fused  multimodal  dataset.  Among  these  models,  the 
Random Forest classifier demonstrated the best performance 
due  to  its  ability  to  handle  nonlinear  physiological 
relationships  and  noisy  sensor  data.  The  proposed  system 
achieved an overall classification accuracy of 96.85%, with a 
precision of 95.90% and a recall of 96.10%, indicating a high 
level of reliability in distinguishing between low, moderate, 
and high stress levels.

Metric Score

Accuracy 96.85%

Precision 95.90%

Recall 96.10%

The  results  also  revealed  that  multimodal  sensor  fusion 
significantly improved stress prediction accuracy compared to 
single-sensor approaches. Features derived from galvanic skin 
response, particularly skin conductance level and GSR peak 
frequency, showed strong sensitivity to stress variations. Heart 
rate variability features extracted from the MAX30102 sensor, 
such as SDNN and RMSSD, exhibited a strong correlation 
with  stress  intensity.  Environmental  parameters,  including 
temperature and humidity, contributed additional contextual 
information that helped reduce false-positive stress detections.
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Real-time  visualization  through  ThingSpeak  enabled 
continuous monitoring of physiological trends, while Firebase 
ensured secure data storage and seamless synchronization with 
the  web dashboard.  The integration of  GPS data  provided 
valuable  context  by associating stress  events  with  specific 
locations.  Overall,  the  results  confirm  that  the  proposed 
system is accurate, scalable, and effective for real-time stress 
monitoring and early intervention.

VI CONCLUSION

This  work  successfully  demonstrates  the  design  and 
implementation  of  an  IoT-enabled  intelligent  stress 
monitoring system that integrates multimodal physiological 
sensing, cloud computing, and machine learning techniques 
for real-time stress assessment.  By combining data from a 
Galvanic  Skin  Response  (GSR)  sensor,  MAX30102  pulse 
sensor,  and  DHT11  temperature  and  humidity  sensor,  the 
system  is  able  to  capture  reliable  physiological  and 
environmental indicators associated with stress. The inclusion 
of GPS-based location tracking further enhances the system by 
enabling  context-aware  monitoring  and  timely  response 
during high-stress events.
Machine learning algorithms were employed to analyze the 
fused sensor data and classify stress levels into low, moderate, 
and high categories. Experimental evaluation showed that the 
Random Forest model outperformed other tested classifiers, 
achieving a high accuracy of 96.85%, thereby validating the 
effectiveness of multimodal sensor fusion and intelligent data 
analysis. Real-time data visualization using ThingSpeak and 
secure data management through Firebase allowed continuous 
monitoring  and  remote  accessibility  via  a  web-based 
dashboard.
The  proposed  system offers  a  low-cost,  non-invasive,  and 
scalable solution for continuous stress monitoring, making it 
suitable for personal healthcare, workplace environments, and 
remote  mental  health  applications.  By  providing  early 
detection  of  stress  and  enabling  timely  intervention,  the 
system has the potential to improve stress management and 
overall  well-being.  Future  enhancements  may  include  the 
integration of additional sensors, mobile application support, 
and advanced machine learning models to further improve 
accuracy and usability.
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