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Abstract- Stress has become a major concern dffecting
physical health, mental well-being, and overall productivity
in modern lifestyles. Conventional stress assessment
techniques such as questionnaires, clinical interviews, and
manual observation are subjective, time-consuming, and
unsuitable for continuous monitoring. To overcome these
limitations, this paper presents an IoT-enabled intelligent
Stress Monitoring System that performs real-time,
continuous, and objective stress assessment using
multimodal physiological sensing and machine learning
techniques. The proposed system integrates a Galvanic Skin
Response (GSR) sensor to measure electrodermal activity, a
MAX30102 sensor to capture heart rate and pulse-based
variability, and a DHT11 sensor to monitor environmental
temperature and humidity. All sensor data are acquired and
transmitted using an ESP8266 Wi-Fi microcontroller, while
a GPS module provides real-time location tracking during
high-stress events. The collected data are transmitted to
cloud platforms where ThingSpeak enables real-time
visualization and preliminary analytics, and Firebase
Realtime Database supports secure data storage and web
dashboard integration. A machine-learning—based stress
classification model categorizes stress levels into low,
moderate, and high using features extracted from
physiological signals. Experimental evaluation
demonstrates high performance, achieving an accuracy of
96.85%, validating the effectiveness of multimodal sensor
fusion. The system offers a reliable, low-cost, and scalable
solution for remote stress monitoring, early intervention,
and intelligent mental health management.
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I INTRODUCTION

It has been observed that stress is emerging as one of the most
important influences on human health, psychological, as well
as overall performance in routine undertakings. The World
Health Organization (WHO) has reported that over 70 percent
of the adult population has common symptoms of stress and
that chronic exposure to stress may have serious effects which
include hypertension, depressive disorders, anxiety disorders,
lack of immunity, heart complications and depression. The
problem of chronic stress has been enhanced by modern
lifestyles, which are marked with heavy workloads, academic
pressures, multitasks, and irregular schedules of all age

Volume: Volume 1 Issue: Issue 1 December 2025

groups. Although it has severe health consequences, stress is
still underdiagnosed as there might be no immediate sign of
the symptoms or people might avoid seeking clinical
assistance until the situation aggravates.

The classical stress measurement techniques are based on
regular clinical assessments, psychological surveys (PSS,
STAI and DASS), and hand monitoring of the physiological
symptoms. These methods are helpful but have a number of
weaknesses. Such techniques are subjective, they require good
honesty and self-understanding of individuals and yield
inconsistent outcomes among various clinicians. Moreover,
they merely give the picture of the state of an individual at a
specific point in time and do not give a real-time
understanding. Physiological signals can also be evaluated
manually, but this method is also susceptible to human error
and delays, thus is not appropriate in identifying diseases at an
early stage or in constant monitoring. Thus, traditional stress
measurement methods do not give the accuracy, sensitivity,
and individualization needed in the modern healthcare system.

The innovations in the sensor technology, embedded systems,
and IoT communication have transformed the design of
intelligent health-monitoring solutions. Galvanic Skin
Response (GSR) and Heart Rate Variability (HRV), pulse rate,
temperature, humidity, and geographic movement patterns are
examples of physiological cues that are very good predictors
of emotional and physiological stress. The signals can be
collected without the use of invasive methods with electronic
sensors that are cheap to purchase. The capacity to gather real-
time data of the IoT devices, in conjunction with the cloud
systems that allow fast storage, visualization and machine
learning analytics has enabled automated stress monitoring to
be viable and even feasible. In a bid to capitalize on these
developments, this paper proposes an overall IoT-based Stress
Monitoring System that brings together numerous sensors and
communication modules in conjunction with cloud services to
form a single unit. The electrodermal activity is measured with
the help of the GSR sensor that records the changes of the skin
conductance due to the activity of the sympathetic nervous
system which is triggered by a stressful event. The pulse
oximeter sensor, which is MAX30102, is used to record the
heart rate and pulse, and with its help, cardiovascular
reactions, which are usually associated with stress attacks, can
be detected. Also, the DHT11 temperature and humidity
sensor can track the environmental characteristics, since the
external conditions could affect both the physiological
reactions and the quality of the sensor.
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The system is designed to use ESP8266 microcontroller,
which has a high processing power, built-in Wi-Fi, low power
consumption, and supports the IoT protocols. By adding a
GPS module, the system is also enhanced with the
functionality of the real-time geolocation, which is essential to
the emergency help in extreme conditions of stress or a panic
attack. This aspect makes the system especially helpful to
vulnerable populations including the elderly, the lone workers,
and students under extreme stress of the mind and the patients
with anxiety disorders.

Any sensor-data is sent to cloud solutions to make sure that it
can be accessed and analyzed in real-time. ThingSpeak is
employed to perform IoT-based data logging, graphical and
fast analytics. Its MATLAB processors allow initial signal
processing and signal trend analysis on the cloud. Firebase
Realtime Database is used in long-term storage, authentication
and integration with the web application. Firebase is secure to
handle user information and allow it to be synchronized
smoothly between the hardware device and the online
dashboard.

Specially created web-based monitoring dashboard shows
real-time stress monitoring, previous trends, the location, and
notifications. The interface is made available to the healthcare
workers, caregivers, or the concerned users so that they would
be able to monitor the stress status of the individual remotely.
The dashboard enhances an ongoing track record and therefore
it is of great help in preventive healthcare, early intervention
and behavioral analysis.

The suggested system is unique because it addresses the issue
of physiological sensing, IoT connectivity, cloud analytics,
and geolocation tracking with the aim of providing an accurate
and continuous stress monitoring solution. It is used to
overcome these weaknesses of manual tests: it offers real-time,
objective, continuous, and scalable stress detection. The
system is cheap, simple to install and is appropriate in both
personal and clinical applications due to the integration of
readily available and cheap components.

Moreover, the growing need in remote healthcare services and
online mental-health platforms has established a strong
necessity in systems that can be successfully used not only in
the hospital settings. The proposed stress monitoring
framework will be scalability- and adaptability-oriented,
meaning that it will be able to serve high valences of users at
the same time due to cloud-based systems such as Firebase and
ThingSpeak. Its open system enables easy addition of new
sensors, machine learning models, or mobile apps to its
architecture in upgrades. This renders the system appropriate
not only at individual level but also in institutional
applications at work place, education centers, elderly care
centers, and police departments. The system offers robust
background to next-generation smart healthcare systems,
which will minimize health risks, enhance user awareness and
offer proactive mental-health intervention by integrating real-
time physiological sensing, cloud connectivity, and intelligent
analytics.

II LITRATURE SURVEY
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Stress monitoring systems have gone through a major change
in the past two decades with the traditional psychological
assessment becoming more advanced and sensor oriented
framework with AI power. Initial studies allotted much
emphasis on self reported questionnaires like the Perceived
Stress Scale (PSS), Depression Anxiety Stress Scale (DASS)
and the State-Traits Anxiety Inventory (STAI). These tools
were however not reliable in continuous or real time
monitoring since they were only based on human perception
and recollection after the fact which was not reliable as they
were widely used. It did not take long before researchers noted
that stress is more of a physiological phenomenon which is
associated with the autonomic nervous system and therefore,
objective biological markers could be more reliable indicators.

This understanding resulted in a boom in laboratory based
physiological stress measurements that incorporated high
grade measuring devices (ECG monitors of heart rate
variability (HRV), electrodermal activity devices of GSR and
respiration monitors of spirometers and infrared thermography
of skin temperature). Although these laboratory systems
yielded relevant physiological data, they were expensive and
complex in terms of hardware and trained professionals and
needed a controlled environment, which was unsuitable to real
world, daily monitoring. Similar to the quality studies in early
medicine that worked only in controlled laboratory
environments, those traditional stress detection systems were
not capable of scaling or working in the day-to-day workings
of the human being.

The following significant change was the emergence of
wearable sensors and miniature biosignal devices that
provided the opportunity to monitor physiological parameters
in the field. The sensors like the GSR sensor took a center
stage in the stress literature since the skin conductance
increases drastically upon activation of the sympathetic
nervous system. At the same time, the optical pulse detectors
such as PPG modules and MAX30102 became popular
because they could provide the heart rate and estimate HRV
parameters without any invasiveness. Various researchers
demonstrated that the combination of GSR (electrodermal
reactivity) and HRV indicators (SDNN, RMSSD, LF/HF
ratio) can be used to classify stress much more effectively.
Other sensors, like temperature and humidity modules
(including DHT11) were also found in the literature, mostly to
explain the effects of the environment that can distort
physiological measurements or give false positive results.

This sensor revolution was bound to introduce machine
learning. Initial efforts were linear classifiers which could not
perform as well as their performance is nonlinear and
dependent on the context of the stress component in
physiological signals. Gradually, more sophisticated machine
learning algorithms like the Random Forest, SVM, Gradient
Boosting and XGBoost have become the new norm in the field
of stress detection. Such models may be able to represent
intricate patterns on more than one physiological scale and
even be computationally small an important benefit observed
in other healthcare automation literature. Other scientists
started working on deep learning and convolutional networks
to examine raw GSR or PPG signals, and they were very
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precise in structured data. Nevertheless, like the deep learning
in the medical-quality research, these models were smacking
of huge computing power, and thus could not work in real-time
embedded stress sensors.

Along with the development of algorithms, IoT and cloud
technologies reached adulthood and created new
opportunities. IoT microcontrollers such as ESP8266, which
provided built in WiFi, low power usage and sufficient
processing unit to support sensor fusion, became more popular
with researchers. Real time visualization, initial analytics and
MATLAB-based processing were implemented on IoT
platforms (such as ThingSpeak), whereas scalable storage and
security layers as well as connection to web/mobile
dashboards were realized using cloud services (such as
Firebase). Such cloud-enhanced architecture reflected
innovations in automated pharmaceutical analysis with cloud
environments taking over manual data processing and
providing an extension of the usefulness of the system in a
manner that transcends laboratory limits.

There is a also a large amount of research in context aware
stress monitoring since it is realized that stress does not exist in
a vacuum. GPS modules and mobile assisted location tracking
started to emerge in the literature with the capabilities to
investigate behavioral and environmental contexts of whether
stress spikes during commutes or during work hours or
crowded spaces or during isolated conditions. Nevertheless, a
series of limitations were always observed in the research:

1. Excessive use of individual sensor modalities A number of
early systems were only relying on GSR or HR alone and
therefore were sensitive to noise, motion artifacts and
environmental variations. Multimodal fusion has not been
studied in real world applications.

2. Little integration and isolation of datasets as medicine
quality, disease prediction, and treatment recommendation
studies hardly ever combined datasets, stress datasets are
discontinuous across sensors, task regimes, sampling rates,
and labeling schemes.

3. Deployment can scale models (e.g. deep neural networks)
that are effective on research but require excessive power and
computational resources to run on the IoT edge.

4. Small real world validation many stress models were only
tested in controlled studies like mental arithmetic tasks hence
they are not reliable to day to day stress changes.

5. A deficiency in explainability like in the previous healthcare
Al systems, stress monitoring models were not transparent and
as such, psychologists or clinicians could not easily discover
why the model had achieved a certain level of stress.

It was also observed that researchers did not find a system
which  combines environmental sensing (humidity,
temperature), physiological sensing (PPG/GSR), location
context, and cloud-based analytics into a single scalable
platform. Although single aspects had been thoroughly
investigated, there was a lack of holistic multimodal stress
monitoring models, which were similar to the fact that
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previous research in the healthcare industry seldom attempted
to pull together a single system to regulate the quality of
medicine, medical diagnosis, and treatment guidelines.

IIT PROPOSED SYSTEM

The proposed system is an intelligent, IoT-enabled stress
monitoring framework designed to continuously assess human
stress levels in real time using multimodal physiological
sensing, cloud computing, and machine learning techniques.
The system aims to overcome the limitations of conventional
stress assessment methods by providing objective, automated,
and context-aware stress detection.

A. Overall System Architecture
The proposed system architecture consists of the following
interconnected modules:

Physiological and Environmental Sensing Module
Embedded Processing and IoT Communication Module
Cloud-Based Data Management and Analytics Module
Machine Learning—Based Stress Classification Module
Web-Based Monitoring and Alert Module

Popoe

All modules operate in coordination to ensure reliable data
acquisition, processing, transmission, analysis, and
visualization.

B. Physiological and Environmental Sensing Module
This module is responsible for capturing real-time
physiological responses and environmental conditions related
to stress:
a. Galvanic Skin Response (GSR) Sensor
Measures skin conductance variations caused by sweat
gland activity Reflects sympathetic nervous system
activation during stress Provides highly sensitive
indicators of emotional arousal.
b. MAX30102 Pulse Oximeter Sensor
Captures heart rate and pulse waveform using PPG
technology Enables extraction of heart rate variability
(HRV) features Helps identify cardiovascular responses
associated with stress.
C. DHT11 Temperature and Humidity Sensor
Monitors ambient temperature and humidity levels
Assists in distinguishing physiological stress from
environmental effects Improves overall accuracy of
stress detection.
d. GPS Module
Collects real-time latitude and longitude data Enables
location-aware stress monitoring Supports emergency
response in high-stress situations
C. Embedded Processing and IoT Communication Module
The ESP8266 microcontroller serves as the core processing
unit.
a. Key functions include:
O Sensor interfacing and data acquisition
O Basic signal conditioning and data formatting
O  Wireless data transmission using built-in Wi-Fi
b. The ESP8266 is selected due to:
O Low power consumption
O High compatibility with IoT platforms
0 Cost-effectiveness and scalability
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D. Cloud-Based Data Management and Analytics Module
To enable real-time monitoring and scalable storage, the
system integrates cloud platforms:
a. ThingSpeak IoT Platform
O Performs real-time data visualization
O Provides graphical representation of physiological
signals
O  Supports basic analytics such as trend analysis
b. Firebase Realtime Database
O  Stores sensor data and stress predictions securely
O Enables real-time synchronization with the web
dashboard
O  Supports user authentication and data integrity
Cloud integration ensures remote accessibility, data security,
and long-term analysis.

E. Machine Learning-Based Stress Classification Module
Extracted features from physiological and environmental
sensors are processed by a machine learning model.
a. Stress levels are classified into:

O Low Stress

O Moderate Stress

O High Stress
Multiple algorithms were evaluated, including Logistic
Regression, SVM, XGBoost, and Random Forest.
b. Random Forest was selected due to:

O  Superior accuracy

O Robustness to noise and outliers

O Ability to handle nonlinear

relationships

0 Feature importance interpretability
Model training is performed offline, while prediction results
are deployed on the cloud for real-time inference.

physiological

F. Context-Aware Stress Detection
a. Stress predictions are correlated with:
O Time stamps
O  GPS coordinates
0 Environmental parameters
b. This context-aware approach:
O Improves reliability of stress detection
O Identifies stress patterns linked to specific locations
or conditions
O  Reduces false-positive stress alerts

G. Web-Based Monitoring and Alert System
a. A web-based dashboard is developed using:

0 HTML, CSS, and JavaScript

O  Chart.js for live data visualization

0  Google Maps API for GPS-based location display
b. Dashboard functionalities include:

O Real-time stress level display

O Historical stress trend analysis

O Live sensor monitoring

O  GPS-based emergency alerts
Alerts are triggered automatically when stress levels exceed
predefined thresholds.

H. Advantages of the Proposed System
a. Continuous and non-invasive stress monitoring
b. Real-time and remote accessibility
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Multimodal sensor fusion for improved accuracy
Cloud-based scalability and data security
Context-aware and location-based stress analysis
Low-cost and energy-efficient design

o oan

I. Summary of the Proposed System

The proposed system presents a holistic approach to stress
monitoring by integrating physiological sensing, IoT
communication, cloud analytics, machine learning, and web-
based visualization into a single scalable framework. This
intelligent system provides accurate, real-time stress
assessment and supports early intervention, making it suitable
for personal healthcare, workplace monitoring, and remote
mental health applications.

IV . METHODOLOGY

The methodology adopted in this work focuses on the
systematic development of an IoT-enabled intelligent stress
monitoring system using multimodal physiological sensing,
cloud computing, and machine learning techniques. The
complete methodology is divided into sequential stages to
ensure accurate data acquisition, reliable processing, and
effective stress classification.

A. Data Acquisition Methodology
a. Physiological, environmental, and location data are
collected continuously from the user.
b.  The following sensors are employed:
O GSR sensor to measure electrodermal activity
caused by stress-induced sweat gland activation.
O MAX30102 sensor to record heart rate and pulse
waveform data using photoplethysmography (PPG).
0 DHT11 sensor to measure ambient temperature and

humidity.

O GPS module to capture real-time latitude and
longitude.

c. All sensors are interfaced with the ESP8266

microcontroller, which synchronizes sensor readings
and ensures stable sampling.

B. Signal Preprocessing

Raw sensor signals often contain noise, missing values, and

motion artifacts. To enhance data quality, the following

preprocessing steps are applied:

a. Removal of invalid or missing sensor readings

b. Noise reduction using basic smoothing and filtering
techniques

C. Normalization of sensor values to maintain uniform data
ranges

d. Time alignment of multimodal sensor data

This preprocessing ensures reliable feature extraction and

accurate stress prediction.

C. Feature Extraction
Relevant features are extracted from the preprocessed sensor
data to represent stress-related physiological patterns:
a. GSR Features
0  Skin conductance level
O  GSR peak count and peak frequency
b. PPG/Heart Rate Features
O  Heart rate (BPM)
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O Heart rate variability (HRV) parameters such as
SDNN and RMSSD
O  Pulse amplitude variations
c. Environmental Features
O Temperature changes
O  Humidity variations
d. Context Features
O Timestamp
O  GPS coordinates
These features form a unified dataset for machine learning
analysis.

D. Data Transmission and Cloud Integration
a. The ESP8266 transmits processed sensor data to the
cloud using Wi-Fi connectivity.
b. Two cloud platforms are used:
O ThingSpeak for real-time data visualization,
plotting, and basic analytics
O Firebase Realtime Database for secure data storage
and dashboard synchronization
c. Cloud integration enables remote access, scalability, and
real-time monitoring.

E. Stress Level Classification
a. A supervised machine learning approach is used to
classify stress levels.
b. Stress is categorized into three classes:
O Low Stress
O  Moderate Stress
O High Stress
C. Several algorithms are evaluated:
O Logistic Regression
O  Support Vector Machine (SVM)
0 XGBoost
0 Random Forest
d. Random Forest is selected as the final classifier due to:
O High accuracy
O Robustness to noisy physiological data
O  Ability to model nonlinear relationships
O  Feature importance interpretability
e. Model training is performed offline, while predictions are
deployed on the cloud for real-time inference.

F. Context-Aware Stress Analysis
a. Stress predictions are correlated with:
O Environmental conditions
O Time of occurrence
O GPS location
b.  This fusion enables:
0 Identification of stress-prone locations
0 Distinction between physiological and
environmental stress
O Reduction of false stress alerts

G. Web-Based Visualization and Alert Mechanism
a. A web dashboard is developed using:

0 HTML, CSS, and JavaScript

O  Chart.js for real-time graphs

0  Google Maps API for GPS visualization
b. The dashboard displays:
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Live sensor readings

Current stress level

Historical stress trends

User location during high-stress events

O o0Ooo

C. Alerts are triggered automatically when stress exceeds
predefined thresholds.

H. Workflow Summary

a. Sensors collect physiological, environmental, and
location data

ESP8266 preprocesses and transmits data to the cloud
Features are extracted and analyzed

Machine learning model classifies stress levels

Results are visualized and alerts are generated

°an o

I. Advantages of the Methodology

Continuous and non-invasive monitoring
Real-time stress detection and visualization
Multimodal sensor fusion for higher accuracy
Scalable cloud-based architecture

Context-aware and location-assisted stress analysis

PAan o

V  RESULTS AND ANALYSIS

The proposed IoT-enabled stress monitoring system was
evaluated using real-time physiological data collected from
volunteers, simulated stress scenarios, and publicly available
stress-related datasets. Data obtained from the GSR sensor,
MAX30102 pulse sensor, DHT11 temperature and humidity
sensor, and GPS module were continuously transmitted to the
cloud, preprocessed, and analyzed using machine learning
techniques. The objective of the evaluation was to assess the
accuracy, reliability, and practical feasibility of the system in
real-world conditions.

The performance of different machine learning algorithms,
including Logistic Regression, Support Vector Machine
(SVM), XGBoost, and Random Forest, was compared using
the fused multimodal dataset. Among these models, the
Random Forest classifier demonstrated the best performance
due to its ability to handle nonlinear physiological
relationships and noisy sensor data. The proposed system
achieved an overall classification accuracy of 96.85%, with a
precision of 95.90% and a recall of 96.10%, indicating a high
level of reliability in distinguishing between low, moderate,
and high stress levels.

Metric Score
Accuracy 96.85%
Precision 95.90%

Recall 96.10%

The results also revealed that multimodal sensor fusion
significantly improved stress prediction accuracy compared to
single-sensor approaches. Features derived from galvanic skin
response, particularly skin conductance level and GSR peak
frequency, showed strong sensitivity to stress variations. Heart
rate variability features extracted from the MAX30102 sensor,
such as SDNN and RMSSD, exhibited a strong correlation
with stress intensity. Environmental parameters, including
temperature and humidity, contributed additional contextual
information that helped reduce false-positive stress detections.
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Real-time visualization through ThingSpeak enabled
continuous monitoring of physiological trends, while Firebase
ensured secure data storage and seamless synchronization with
the web dashboard. The integration of GPS data provided
valuable context by associating stress events with specific
locations. Overall, the results confirm that the proposed
system is accurate, scalable, and effective for real-time stress
monitoring and early intervention.

VI CONCLUSION

This work successfully demonstrates the design and
implementation of an IoT-enabled intelligent stress
monitoring system that integrates multimodal physiological
sensing, cloud computing, and machine learning techniques
for real-time stress assessment. By combining data from a
Galvanic Skin Response (GSR) sensor, MAX30102 pulse
sensor, and DHT11 temperature and humidity sensor, the
system is able to capture reliable physiological and
environmental indicators associated with stress. The inclusion
of GPS-based location tracking further enhances the system by
enabling context-aware monitoring and timely response
during high-stress events.

Machine learning algorithms were employed to analyze the
fused sensor data and classify stress levels into low, moderate,
and high categories. Experimental evaluation showed that the
Random Forest model outperformed other tested classifiers,
achieving a high accuracy of 96.85%, thereby validating the
effectiveness of multimodal sensor fusion and intelligent data
analysis. Real-time data visualization using ThingSpeak and
secure data management through Firebase allowed continuous
monitoring and remote accessibility via a web-based
dashboard.

The proposed system offers a low-cost, non-invasive, and
scalable solution for continuous stress monitoring, making it
suitable for personal healthcare, workplace environments, and
remote mental health applications. By providing early
detection of stress and enabling timely intervention, the
system has the potential to improve stress management and
overall well-being. Future enhancements may include the
integration of additional sensors, mobile application support,
and advanced machine learning models to further improve
accuracy and usability.
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